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Scaling transformation of random walk distributions in a lattice
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We use a decimation procedure in order to obtain the dynamical renormalization group transformation
~RGT! properties of random walk distribution in a 111 lattice. We obtain an equation similar to the Chapman-
Kolmogorov equation. First we show the existence of invariants through the RGT. We also show the existence
of functions which are semi-invariants through the RGT. Second, we show as well that the distribution
Rq(x)5@11b(q21)x2#1/(12q) (q.1), which is an exact solution of a nonlinear Fokker-Planck equation, is
a semi-invariant for RGT. We obtain the mapq85 f (q) from the RGT and we show that this map has two fixed
points:q51, attractor, andq52, repellor, which are the Gaussian and the Lorentzian, respectively. We show
the connections between these result and the Levy flights.

PACS number~s!: 05.40.Fb, 05.20.2y, 02.50.2r
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The Chapman-Kolmogorov equation is the simplest
scription of a Markovian process and it is a key concept
statistical mechanics. On the other hand, scaling methods
essential in circumstance where a system is scaling inva
or act as if it was so. As a general rule, whenever a cha
teristic control length diverges, critical effects occur who
treatment requires renormalization group~RG! methods
@1–4#. In this way, scaling on linear lattices becomes a po
erful and elegant tool, since these systems have recur
hierarchical geometry.

The main objective of this article is to analyze the evo
tion of the random walk noise distribution~RWD! in 111
lattice. We obtain the surprising result that the evolution
similar to a Chapman-Kolmogorov equation.

The equation of the motion for the displacementj l at the
site l is

24Vj l5j l 2122j l1j l 111gl , ~1!

whereV5vp(p51 diffusion,p52 elastic waves!, v is the
frequency in appropriate units, andgl is a force due to RWD
of noise. The renormalization group transformation~RGT!
for the equation of motion of a linear lattice, decimation,
well known @4#. The new idea here is to introduce the noi
at the sitel and to find out its evolution.

We then eliminate the sitesl 21 andl 11 to get

24V8j l5j l 2222j l1j l 121gl8~ t !, ~2!

where V854V(12V) and gl85gl 1112gl1gl 2124Vgl .
For successive iterations we have
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Vn54Vn21~12Vn21!, ~3!

n being the order of iteration. Equation~3! produces a cha-
otic map in the region 0,V,1, with density P(V)
}@V(12V)#21/2. This distribution has very high probability
for numbers close to 0 and 1@5#. Both gives sums or sub
tractions of two consecutive distributions, i.e.,gl6gl 21. Ad-
ditions or subtractions of random numbers brings to the sa
result. In any case, the hydrodynamical limitV→0, corre-
sponds to the relevant excitations. For acoustic modes
wavelength l, V'(l21a)2!10210. Consequently, we
may drop the termVgl . Thus the noise transformation be
comes

gl85gl 1112gl1gl 21 . ~4!

Therefore each RGT will be the sum of two consecut
sums. For example, consider first a discrete noisegj5Qm,
with Q as the noise intensity andm561/2. The initial prob-
ability W0 has the valueW0(m)51/2, while for the first sum
the results will beW1(61)51/4; W1(0)51/2. The inter-
val has been doubled and the probability has been modifi
After n iterations~sums! the probability may be written in
the recursive form

Wn~k!5(
j

Wn21~ j !Wn21~k2 j !, n>1. ~5!

Notice thatWn(k) has a binomial-type distribution.
In order to obtain the density of probability, or the dens

distribution, of noise at the iterationn,Pn(x), we first local-
ize x in discrete intervalsk of width Dx. We define now
Wn(k) as the probability of ordern of finding x in a given
interval k. Now, in the continuous limitDx→0, we obtain
7200 ©2000 The American Physical Society
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Pn~x!5E
l1

l2
Pn21~x8!Pn21~x2x8!dx8, n>1. ~6!

Here uxu,Ln , ux8u,Ln21, andLn52Ln21. From this con-
dition we getl15(2Ln2x1uxu)/2, l25(Ln2x2uxu)/2.

Equation ~6! is similar to the Chapman-Kolmogoro
equation if we consider the evolution inn as the time evolu-
tion. However, our equation is iterative, and the function
ordern,Pn(x), for low n may be very different from that o
ordern21. In this aspect, the left hand side of Eq.~6! may
have RWD which are formally different from the right han
side. For largen we expect a RWD which will not chang
any more. In this aspectn→` is similar tot→` in a kinetic
equation.

Since Eq.~6! brings us back to the generalized cent
limit theorem ~GCLT!, we may ask: what is new? First, i
the GCLT each step consists in adding a new random v
able xN11 to the sum (x11x21•••1xN)/N, while in the
RGT the number of random variables grows exponentia
(N54n) as iterations succeed. Second, and most fundam
tal, we are not adding the variables. It is the collective m
tion which is doing that, indeed, it is the same as Eq.~3!
where a given starting frequency generates all the pho
spectrum. Thus if we apply a symmetric and discrete nois
intensity 6Q @as in Eq.~5!# we end up with a Gaussia
distribution. Finally, this is a direct connection between R
methods and the Chapmann-Kolmogorov equation.

The recurrence relation defined by Eq.~6! has very im-
portant properties. For an even starting distribution, all
subsequent distributions will be even; the distributions w
be decreasing functions ofuxu, with vanishing values for
uxu>Ln . The convolution~6! gives

P̃n11~k!5 P̃n~k!2, ~7!

whereP̃n(k) is the Fourier transform

P̃n~k!5E
2`

1`

e2 ikxPn~x!dx. ~8!

Equations~7! and ~8! show that if Pn(x) is a normalized
function, P̃n(0)51,Pn11(x) is normalized as well.

We shall denote invariants of the renormalization gro
transformation~IRGT! the functions which keep their form
under two consecutive transformations given by Eq.~6!. For-
mally, the IRGT may be read as

Pn~x!5bPn22~bx!, ~9!

in such way that the lattice spacinga transforms asa852a,
and the noise linewidth asc85c/b.

By using direct integration we show that the Gauss
exp@2(x/c)2#, the Lorentzian (c21x2)21 and the delta func-
tion d(x/c) are IRGT. Moreover, the set of Le´vy functions
@6#

L~m,x!5
1

2pE eikxe2(ck)m
dk ~10!

are IRGT. This can be directly obtained from Eqs.~7! and
~9! with b5222/m. The Gaussian (m52), the Lorentzian
f
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(m51), and the delta function (m50) are particular cases o
Eq. ~10!. The parametersc scale the same asa only for the
Gaussians. That is, Gaussians are commensurate with
lattice. For fractionalm,0,m,2,L(m,x) is used in the
study of fractal diffusion@7#. Recently Chaves@8# found out
a fractal diffusion equation to describe Le´vy flights. As a
consequence, he predicted the violation of space-inver
symmetry, which was confirmed experimentally@9# with m
'1.3.

Consider now the sequences of functionsPn(q,x). Hereq
is a continuous parameter 1<q<2, andx is unbound:uxu
,`. For this sequence we know the function

P0~q,x!5Rq~x!, ~11!

where

Rq~x!5Aq@11b~q21!x2#1/(12q). ~12!

For largex and q5” 1 Eq. ~12! behaves as a power law.
decays more slowly than Gaussians (q51) and are more
appropriate to the study of critical behavior@10#. This RWD
has been applied meaningfully to the study of several p
nomena such as turbulence@11#, anomalous random walk
@12#, linear response@13#, and to scaling properties of mul
tifractal attractors@14#. This distribution is as well the exac
solution of a nonlinear Fokker Planck equation@15#. It is not
difficult to see that for everym andc exist aq andb which
makes Eq.~12! close to Eq.~10!, i.e., curve~12! is curve~10!
plus a perturbation.

Using Eq. ~12! in to Eq. ~6! we obtain a new function
P1(q,x), which in general do not have the same formRq(x).
This is not a surprise since Tsallis recipe is for no
Markovian systems which do not satisfy the Chapma
Kolmogorov equation. However,P1(q,x) is very close to
Rq(x) if the parameters are adjusted to become new par
etersq8, Aq8 , andb8. Thus we can say

P1~q,x!'Rq8~x!, ~13!

or successivelyPn(q,x)5Pn21(q8,x) until we reach Eq.
~13!. We shall call this RGT semi-invariant~SRGT!. The
parametersq, Aq , andbq transform as

q85 f ~q!, ~14a!

b85bb~q!, ~14b!

Aq85
Aq

2

Ab
i ~q!. ~14c!

We suggest a procedure for obtainingf, b, and i ~FBI
transformation! by making the functions and all derivative
up to the fifth order to agree at the origin. From those
obtain

f ~q!5q2
4q~q21!~q22!

3q2216q15
, ~15a!

b~q!5
52q

4~11q!
, ~15b!
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i ~q!5
42a11pG~4a21!Aa

G~2a!2
, a5

1

q21
. ~15c!

We shall notice that this result is exact only forq51,
Gaussian, andq52, Lorentzian. Consequentlyf, b, andi are
approximate functions. Before we proceed to analyze the
plication of the FBI transformation we shall discuss the er
related to the approximation. We define the relative stand
deviation

Sd~q![
1

AE uRq8~x!2P1~q,x!u2dx, ~16!

whereA5u*Rq8(x)dxu251.
In Fig. 1 we plotSd(q) as a function ofq. It shows a

maximum around q'1.7, Sd(1.7)'431025. Conse-
quently, even the maximum error is meaningless. We se
well that Sd drops to zero very rapidly as we approach t
fixed points. Consequently, for most of the practical purp
we can take Eq.~13! as an equality.

In Fig. 2 we plot P1(q,x) and Rq8(x) for various q8

FIG. 1. We plot the standard deviationSd as a function ofq. For
every value ofq,Sd measure the ‘‘distance’’ between the exa
P1(q,x) and the analyticalRq8(x) obtained approximately throug
the RGT. We see that error is meaningless (Sd,531025).

FIG. 2. Density of probability for several values ofq. The con-
tinuous curve is obtained by the approximated analytical renorm
ization group transformation, while the points are from exact
merical calculations.
-
r
rd

as

e

5f(q). The full curve is from the renormalization approac
while the points are from the numerical integralP1(q,x).
Again we see a remarkable agreement.

We return now to the analysis of the Eq.~15!. They are
the RGT for the Eq.~12! thought the decimation proces
Equation~15c! is just the requirement thatRq(x) is normal-
ized, we shall discuss onlyf (q) and b(q). First Eq. ~15a!,
the main one, gives the mapq85 f (q), i.e., how successive
q8 may be obtained from the previousq.

In Fig. 3 we plotq8 as a function ofq. The straight line,
Fig. 3~a!, is the set of the fixed pointsq85q, while Fig. 3~b!
is the mapq85 f (q). The map shows two fixed pointsq!

5 f (q!) at q1
!51 and q2

!52. We shall notice that the re
quirement for stabilityud f(q!)/dqu,1 is fulfilled only for
q!51. Consequently only the Gaussian is a stable fix
point ~attractor!. Figure 3~c! shows the trajectory obtaine
from the returned map. A consequence of the FBI trans
mation is to reduce the freedom ofq. We start with anyq
Þq! and we get a discrete sequence of transformation
wardsq→q1

!51.
Equation ~15b! shows another important result. That

how the length scale is modified by our RGT. For the RW
give by Eq.~12!, ^x2&}1/b. It is well know @16# that ^x2&
}t2/D f , where D f is the fractal dimension of the random
walk. The evolution could be stated as

^x2&n11

^x2&n

5
b

b8
522/D f ~17!

or

D f5m52
ln~4!

ln@b~q!#
. ~18!

Equation ~18! establish a connection between the Le´vy
flights and the power law~12!. Again, D f is a approximated
function being exact only for the fixed points. Note that t
ratio ~17! holds even if̂ x2& diverges.

l-
-

FIG. 3. The return map. We plotq8 as function of previousq in
the iterative process. In~a! we show the lineq85q. In ~b! we show
the curveq85 f (q) with the fixed pointsq!5 f (q!) at q1

!51 and
q2

!52. The derivative of the curve shows that only the Gauss
q1

!51 is an attractor. In~c! we show a trajectory going from a
arbitraryq5” q!, approaching successively the stable fixed point
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The fractal dimension is a decreasing function ofq. For
q51, D f52 and^x2&}t, while for q52, D f51, and^x2&
}t2. For 1<q<2 we get 2<D f<1. This is the same rang
found for electron diffusion in disordered lattice@17#.

We have seen that the Lorentzians and Gaussians
fixed points of both sequencesL(m,x) and Pn(q,x). This
may have some connections with the fact that Gaussians
Lorentzians have integer dimensions. So, there is a comm
surability between the scaling of the lattice parameter and
scaling of the linewidth of those curves.

In conclusion, we start with a decimation process for
RWD which brings us to an iterative equation which is sim
lar to the Chapman-Kolmogorov equation. We show the
istence of some RWD which are invariants of the equati
We show as well the existence of SRGT, which may be
practical use in the study of RWD governed by power la
These find many applications in physics. In particular, in
last years reasonable amount of work has been don
granular material and surface growth@18# where inelastic
,
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collisions take place and the hypothesis of molecular ch
breaks down. For those we expect the results discussed
will be important.

Scaling concepts may enrich the study of nonlinear p
nomena@19#, in particular, these concerning nonlinear stab
ity, such as fractures@20#. In general, a nucleation~see Ref.
@21# and references therein! may occur when fluctuations
grow beyond a nonreturn point. The inclusion of noise m
shade some light in this important problem. A more detai
discussion will need to include non-Markovians effects. T
shape of Eq.~6! will be drastically modified and the poss
bility of obtaining a stable solution other than Gaussians m
be possible. However, at the present state of art, it rem
wishful thinking.
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