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Scaling transformation of random walk distributions in a lattice
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We use a decimation procedure in order to obtain the dynamical renormalization group transformation
(RGT) properties of random walk distribution in a1 lattice. We obtain an equation similar to the Chapman-
Kolmogorov equation. First we show the existence of invariants through the RGT. We also show the existence
of functions which are semi-invariants through the RGT. Second, we show as well that the distribution
Ry(x)=[1+b(q—1)x*]¥*~® (g>1), which is an exact solution of a nonlinear Fokker-Planck equation, is
a semi-invariant for RGT. We obtain the map=f(q) from the RGT and we show that this map has two fixed
points:q=1, attractor, and|= 2, repellor, which are the Gaussian and the Lorentzian, respectively. We show
the connections between these result and the Levy flights.

PACS numbd(s): 05.40.Fb, 05.206-y, 02.50~r

The Chapman-Kolmogorov equation is the simplest de- Q,=40,_1(1-Q,_1), 3)
scription of a Markovian process and it is a key concept of
statistical mechanics. On the other hand, scaling methods afepeing the order of iteration. Equatid8) produces a cha-
essential in circumstance where a system is scaling invariagkic map in the region €Q<1, with density P(Q)
or act as if it was so. As a general rule, whenever a charac:[ ) (1—)]~Y2 This distribution has very high probability
teristic control length diverges, critical effects occur whosefor nymbers close to 0 and [B]. Both gives sums or sub-
treatment requires renormalization grouRG) methods  yractions of two consecutive distributions, i.gy:r gy_ ;. Ad-
[1-4]. In this way, scaling on linear lattices becomes a poW-gjtions or subtractions of random numbers brings to the same
erful and elegant tool, since these systems have recursivggit. In any case, the hydrodynamical lirflt—0, corre-

hierarchical geometry. L sponds to the relevant excitations. For acoustic modes of
The main objective of this article is to analyze the eVO'“'waveIength N, Q~(A"'a)2<10°1% Consequently, we

tioq of the ra”de walk no'is'e distributioRWD) in 1+,1 .~ may drop the term{)g,. Thus the noise transformation be-
lattice. We obtain the surprising result that the evolution is,

comes
similar to a Chapman-Kolmogorov equation.
The equation of the motion for the displaceménpat the ,
sitelia placemen 0/ =01 1+201+9 1. (4)
—4OE=E_1-25+E 4110, (1)  Therefore each RGT will be the sum of two consecutive

sums. For example, consider first a discrete ngise®m,
where() = wP(p=1 diffusion, p=2 elastic wavel o is the  with ® as the noise intensity and= + 1/2. The initial prob-
frequency in appropriate units, aggdis a force due to RWD  ability W, has the valu&Vy(m) = 1/2, while for the first sum
of noise. The renormalization group transformati@GGT) the results will bew,(=1)=1/4; W,(0)=1/2. The inter-
for the equation of motion of a linear lattice, decimation, isval has been doubled and the probability has been modified.

well known[4]. The new idea here is to introduce the noiseAfter n iterations(sumg the probability may be written in
at the sitel and to find out its evolution. the recursive form

We then eliminate the sitds-1 andl+1 to get

—4Q0 §=6-= 25+ 210 (1), ) Wo (k)= Wy 1())W,_1(k—j), n=1. (5
J
where Q' =4Q0(1-Q) and g/ =9,:1+29,+9,-1—4Qg0,.
For successive iterations we have Notice thatW,,(k) has a binomial-type distribution.

In order to obtain the density of probability, or the density
distribution, of noise at the iteratiom P,(x), we first local-

*Electronic address: fao@iccmp.br ize x in discrete intervalk of width Ax. We define now
"Electronic address: bernardo@iccmp.br W, (k) as the probability of orden of finding x in a given
*Electronic address: isaac@de.ufpe.br interval k. Now, in the continuous limiAx— 0, we obtain
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Ao (u=1), and the delta function(=0) are particular cases of
Pn(X):f Poo1(X")Pp_1(x=x")dx’, n=1. (6) Eq.(10). The parameters scale the same asonly for the

M Gaussians. That is, Gaussians are commensurate with the
Here|x|<L,, |x'|<L,_;, andL,=2L,_,. From this con- lattice. For fracpionat_lﬂ,0<ﬂ<2,L(M,x) is used in the
dition we geth ;= (—L,—x+|X|)/2, \y=(L,—x—|x|)/2. study of fra}ctalld|ffu3|or{7]. Recently _Chgveﬁg] found out

Equation (6) is similar to the Chapman-Kolmogorov & fractal diffusion equation to de_scrlbe \heflights. As a
equation if we consider the evolution inas the time evolu- consequence, he predicted the violation of space-inversion
tion. However, our equation is iterative, and the function ofSYmmetry, which was confirmed experiment&8} with .
ordern,P,(x), for low n may be very different from that of ~13. ) )
ordern—1. In this aspect, the left hand side of B§) may Consider now the sequences of functiéhgq,x). Hereq
have RWD which are formally different from the right hand i @ continuous parameter<ly<2, andx is unbound:/x|
side. For largen we expect a RWD which will not change <*- For this sequence we know the function

. [— OO — 00
zgﬁégg:ﬁ In this aspect is similar tot in a kinetic Po(q.%) = Ry(X), (11)

Since Eq.(6) brings us back to the generalized central
limit theorem (GCLT), we may ask: what is new? First, in
the GCLT each step consists in adding a hew random vari- Rq(x)qu[l+,8(q—1)x2]1’(1*‘1)_ (12)
able xy 41 to the sum k1 +X,+ -+ - +X\)/N, while in the
RGT the number of random variables grows exponentiallyFor largex and g#1 Eg. (12) behaves as a power law. It
(N=4") as iterations succeed. Second, and most fundamemlecays more slowly than Gaussiargg=(1) and are more
tal, we are not adding the variables. It is the collective mo-appropriate to the study of critical behavi{di0]. This RWD
tion which is doing that, indeed, it is the same as B)]. has been applied meaningfully to the study of several phe-
where a given starting frequency generates all the phononomena such as turbulen¢gl], anomalous random walk
spectrum. Thus if we apply a symmetric and discrete noise df12], linear responsg13], and to scaling properties of mul-
intensity =0 [as in Eq.(5)] we end up with a Gaussian tifractal attractorg§14]. This distribution is as well the exact
distribution. Finally, this is a direct connection between RGsolution of a nonlinear Fokker Planck equat{ds]. It is not
methods and the Chapmann-Kolmogorov equation. difficult to see that for every. andc exist aq andb which

The recurrence relation defined by H) has very im- makes Eq(12) close to Eq(10), i.e., curve(12) is curve(10)
portant properties. For an even starting distribution, all theplus a perturbation.
subsequent distributions will be even; the distributions will Using Eq.(12) in to Eq. (6) we obtain a new function
be decreasing functions dk|, with vanishing values for P;(q,x), which in general do not have the same fdRy(x).

where

|x|=L,. The convolution(6) gives This is not a surprise since Tsallis recipe is for non-
Markovian systems which do not satisfy the Chapman-
Ps1(K) =P, (k)2 (7)  Kolmogorov equation. Howeve;(q,x) is very close to
B Rq(x) if the parameters are adjusted to become new param-
whereP (k) is the Fourier transform etersq’, A;, andB’. Thus we can say
'ﬁ)n(k):f*—we*ikxl:)n(x)dx. (8) Pl(qvx)%Rq’(X)a (13)

or successivelyP,(q,x)=P,_1(9’,x) until we reach Eq.
Equations(?) and (8) show that if Pn(x) is a normalized (13) We shall call this RGT Semi'invariar(SRGT). The

function, P,,(0)=1,P,, 1(x) is normalized as well. parameters), Aq, andfq transform as

We shall denote invariants of the renormalization group q'=f(q) (143
transformation(IRGT) the functions which keep their form '
under two consecutive transformations given by @g. For- '
mally, the IRGT may be read as p'=pba), (149

A2

Aq/:\/—ﬂi(q). (140
in such way that the lattice spaciagransforms ag’ =2a, k

and the noise linewidth as’=c/b. ~ We suggest a procedure for obtainifgb, andi (FBI
By using direct integration we show that the Gaussianyansformation by making the functions and all derivatives

exp —(x/c)’], the Lorentzian ¢*+x*)~* and the delta func- yp to the fifth order to agree at the origin. From those we
tion 6(x/c) are IRGT. Moreover, the set of kg functions  gptain

Pn(X)=bPn_5(bX), 9

[6]
4q(q—1)(q—-2)
L[ e fla=a-—5———— (159
— k k) # )
L('“’X)_Ef elkxg= (e gk (10) 3¢%—16q+5
are IRGT. This can be directly obtained from E¢8) and b(q) = q (15b)

(9) with b=2"2* The Gaussian£=2), the Lorentzian 4(1+q)’
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FIG. 1. We plot the standard deviati&y as a function of}. For ! 1.2 L4 1.6 1.8 2

every value ofq,Sy measure the “distance” between the exact
P1(q,x) and the analyticaR,,(x) obtained approximately through FIG. 3. The return map. We plaof’ as function of previous in
the RGT. We see that error is meaningleSg<(5x10"°). the iterative process. Ifa) we show the ling’ =q. In (b) we show
the curveq’ =f(q) with the fixed pointsg*=f(g*) atqj=1 and
) 42““771“(401— 1) \/; 1 g5=2. The derivative of the curve shows that only the Gaussian
i(q)= > AT T (150  g*=1 is an attractor. Inc) we show a trajectory going from a
I'(2a) 9 arbitraryq#q*, approaching successively the stable fixed point.

We shall notice that this result is exact only fgr=1, =f(qg). The full curve is from the renormalization approach
Gaussian, and=2, Lorentzian. Consequentfyb, andi are \&- . . PP ’
while the points are from the numerical integi](q,x).

approximate functions. Before we proceed to analyze the im; ain we see a remarkable aareement
plication of the FBI transformation we shall discuss the err0|Ag Y '

S . : We return now to the analysis of the E{.5). They are
related to the approximation. We define the relative standar AL
deviation ﬁwe RGT for the Eq(12) thought the decimation process.

Equation(159 is just the requirement th&,(x) is normal-

1 ized, we shall discuss onli{q) andb(q). First Eq. (1539,
Sy(q)= Kf |Rq/(X)—P1(q,x)[dX, (16)  the main one, gives the mapg =f(q), i.e., how successive
g’ may be obtained from the previoas
whereA=|qu,(x)dx|2=1. In Fig. 3 we plotq’ as a function ofy. The straight line,

In Fig. 1 we plotSy(q) as a function ofg. It shows a  F9- 3@, is the set of the fixed pointy’ =g, while Fig. 3b)
maximum around q~1.7, S4(1.7)~4x10°5 Conse- IS the mapqizf(q). Thf map shows two fixed pointy’
quently, even the maximum error is meaningless. We see as f(d") atd;=1 andq;=2. We shall notice that the re-
well that S, drops to zero very rapidly as we approach theduirement for stabilityldf(q*)/dg|<1 is fulfilled only for

fixed points. Consequently, for most of the practical purposél”=1. Consequently only the Gaussian is a stable fixed
we can take Eq(13) as an equality. point (attractoy. Figure 3c) shows the trajectory obtained

In Fig. 2 we plotP;(g,x) and Ry (x) for various g’ from the returned map. A consequence of the FBI transfor-
mation is to reduce the freedom qgf We start with anyg
#q* and we get a discrete sequence of transformation to-
wardsq—q;=1.
Equation (15b shows another important result. That is

1 L o3

08 n how the length scale is modified by our RGT. For the RWD
give by Eq.(12), (x?)=1/B. It is well know [16] that (x?)
0.6 1 «t?P1 where D¢ is the fractal dimension of the random
x walk. The evolution could be stated as
o
~ 2
0.4 <X >2n+1 :£,222/Df (17)
X B
0.2
or
= In(4)
0 1 2 3 4 5 Di=p=-— Inb(a)]" (18

FIG. 2. Density of probability for several values @f The con- ~ Equation (18) establish a connection between thevye
tinuous curve is obtained by the approximated analytical renormalflights and the power lawl2). Again, D¢ is a approximated
ization group transformation, while the points are from exact nu-function being exact only for the fixed points. Note that the
merical calculations. ratio (17) holds even if{x?) diverges.
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The fractal dimension is a decreasing functiongofFor  collisions take place and the hypothesis of molecular chaos
=1, D;=2 and(x?)«t, while for =2, D;=1, and(x?) breaks down. For those we expect the results discussed here
«t?. For 1=q<2 we get 2<D;=<1. This is the same range will be important.
found for electron diffusion in disordered latti€7]. Scaling concepts may enrich the study of nonlinear phe-

We have seen that the Lorentzians and Gaussians armend19], in particular, these concerning nonlinear stabil-
fixed points of both sequences(u,x) and P(q,x). This ity such as fractureg20]. In general, a nucleatiofsee Ref.
may have some connections with the fact that Gaussians ad1] and references thergirmay occur when fluctuations

surability between the scaling of the lattice parameter and thg5ge some light in this important problem. A more detailed

Scilgngogiltl:lseiolinnevv\yei}dga?: c\t}?hsz ((:juer(\:/i(ransétion process for thediscussion will need to include non-Markovians effects. The
i o : : . =22 T " =shape of Eq(6) will be drastically modified and the possi-
RWD which brings us to an iterative equation which is simi- b a(6) y p

) bility of obtaining a stable solution other than Gaussians ma
lar to the Chapman-Kolmogorov equation. We show the ex y g Y

istence of some RWD which are invariants of the equationb?sﬁfczjslstﬁlsl'(i:'; wever, at the present state of art, it remains
We show as well the existence of SRGT, which may be o '

practical use in the study of RWD governed by power law. We would like to thank Professor Alaor Chaves for pre-
These find many applications in physics. In particular, in thesenting us with his results prior to publication. Also, we
last years reasonable amount of work has been done iwould like to thank FAP-DF, CNPq, and FINEBrazil) for
granular material and surface growflh8] where inelastic financial support.
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